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ABSTRACT Hb-)-- pJCf 
Experimental apparatus for  the study of accelerating flames in a two- 

phase mixture consisting of a liquid fuel spray in a gaseous oxidizer is de- 

scribed. Observations of the development of detonation in liquid kerosene- 

oxygen mixtures made by means of streak self-light photographs in a 

1-1/2 inch square Plexiglas tube, initially at atmospheric pressure and 

room temperature, a r e  reported. 

Due to the slow reaction kinetics of a two-phase system, as compared 

to a homogencous gsscous mixture, acceleration of the combustion front was 

found to be controlled primarily by the flow field ahead of the flame and this 

was attributed to the effect it had on the power density of energy deposition 

in the reaction zone. Results of experimental observations represented on 

the induction time-distance plane demonstrate a distinct dependence of the 

plot on the manner in which combustion was initiated, the time to distance 

ratios being larger when it occurred at a point than in the cases when it started 

in the form of a bulk explosion. 

Results of numerical thermodynamic-equilibrium analysis of pressure, 

density, temperature, velocity and Mach number for Chapman- Jouget detonations 

a r e  given as a function of stoichiometric ratio. Velocities of detonation computed 

for  the same initial conditions of apurely gaseous system have been shown to be 

identical to those of spray combustion, but the corresponding pressure increase 

in the gas was lower. 
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2. 

EXPERIMENTAL APPARATUS 

Reaction Tube 

The reaction tube, shown in Fig. 1,  was constructed from 1/2 inch 

thick Plexiglas forming a square 1 1/2 x 1 1/2 inch cross section over a 

length of 75 inches. The sides were glued together and then the tube was 

held in compression over its full length by 1 inch steel angles at each 

corner fastened by seven clamps. A t  15 inch intervals the tube was fitted 

with ignition ports made of brass bushings that screwed into the Plexiglas 

and were tapped to accommodate 18mm spark plugs. 

Spray Head 

The fuel was introduced into the tube through the spray head shown 

in Fig. 2. The flow was divided into separate streams by a set of stainless 

steel hypodermic tubes 1/4 inch long held in a brass plate by epoxy cement. 

Three such plates were constructed; the first had 36 No. 24 tubes (0.0115 

inches I.D.), the second - 18 No. 2 1  tubes (0.0195 inches I .  D.), and the 

third - 9 No. 18 tubes (0.0330 inches I. D.). 

The top of the spray head had a thin metal membrane to introduce 

acoustic vibrations into the stagnation reservoir of the fuel. The purpose 

of the vibrations was to cause the jets issuing from the tubes to break up 

into uniform streams of drops. The fundamental theory of this phenomenon 
has been developed by Raleigh, (12) Weber,(13) and Chandrasekhar (14) . 
Characteristic features of the acoustic technique for the generation of 

spray will be described in a separate report. 

The spray head had provision for  the introduction of oxygen or  nitrogen 

to  the tube. Pure oxygen was  used for burning and nitrogen for purging. Both 

gases entered through separate ports parallel to the fuel tubes in an attempt 

to  reduce turbulence at the inlet section. 
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Fuel System 

The fuel was stored in a military surplus breathing oxygen bottle with 

a volume of approximately 500 cubic inches and then supplied to the spray 

head by regulated nitrogen pressure. 

The unburned fuel was trapped in a wedge-bottomed box and con- 

tinuously pumped through a filter to a second fuel bottle which replaced the 

supply when it was empty. The flow and control system is described 

schematically in Fig. 3. 

IPnition 

The ignitor, shown in Fig. 4, was made from a Champion 18mm spark 

plug. The center electrode was extended 3/8 inch and the ground electrode 

was straightened. Then a strip of one mil aluminum foil 3/16 inch wide was 

stretched across the gap and wrapped around each electrode. The foil burned 

rapidly due to ohmic heating when 120 volts A. C. was applied across the 

electrodes. The width of the foil was limited to approximately 3/16 inch in 

order to insure that it would carry a maximum current of about 9 amps before 

burning. 

Records 

Al l  records were taken by means of streak self-light photography. Thus 

a portion of one side of the tube was left a s  an unmasked slit along the tube axis 

which was focused by means of a single objective lens on the film plane of a 

rotating drum camera. A slit width of 2mm was found to pass sufficient light 

to expose Kodak Tri-X film with an image size of 0.07mm. 

The camera used for the experiments was a Southern Instruments 

Rotating Drum Camera, Model M1020. The 16 inch diameter drum was operated 

at a peripheral speed of 300 inches per second. The objective lens was a 7-inch 

focal length f/2.5 aperature, Kodak Aero-Ektar aerial camera lens. The 

experimental set-up is shown in Fig. 6. 

It was necessary to perform the experiments in complete darkness since 

the early stages of burning were dim relative to normal background lighting. 
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Besides this, an automatic shutter was needed to prevent double exposure due 

to slow burning at the top and bottom of the tube. The shutter mechanism is 

shown in Fig. 5. Ignition timing was accomplished by the microswitch which 

was closed by the shutter a s  it opened to the position of minimum acceptable 

exposure. The mechanism was actuated by a selonoid and closed by a spring. 

The spring tension was adjusted s o  that the shutter remained open for approxi- 

mately one revolution of the drum camera and the microswitch trip-mechanism 

was set, after several trials, to close at the acceptable exposure. 

Drop Measurement 

A shuttle mechanism that was made to sample drop sizes is shown in 

Fig. 7 along with a typical record obtained with its use. Drops were caught 

on the small plate coated with a smooth thin layer of silicone grease to pre- 

vent wetting. The plate went through the stream twice as  it went out and back. 

The results were found to depend strongly upon the operator's skill and it was 

observed that the acceleration at the end of the stroke was large enough to 

cause coalesence of some drops. 

The most reliable method for recording drop size was found to be 

direct photography of the spray with a five-fold magnification using Polaroid 

4 x 5 Land Film Packets and a short duration Xenon light source. A typical 

example of the records obtained in  this way showing drop formation near 

the generator is represented by Fig. 8. 

RESULTS 

A set of typical records are given by Plates 1 to 13. Self-light 

streak photographs cieariy show the paths of the Eame fronts and. the particiev 

in the combustion zone. In particular, one can observe the effect of rare- 

factions and of shock waves by changes in luminosity as  well as sharp deflections 

in particle paths. The parallel lines crossing all of the records a re  the images 

of the clamps spaced at 10 inch intervals along the tube length. 



A l l  records shown were made with an initial oxygen flow velocity of 

1 .7  m/sec corresponding to a Reynolds Number of 2800 based on the hydraulic 

diameter of the tube. With the use of oxygen the burning process was repro- 

ducible and the transition to detonation normally occurred within the 75 inches 

of the tube length. Without the oxygen flow the burning process tended to die 

out or  travel at a relatively low velocity of 6 to 11 m/sec with almost no ob- 

servable acceleration along its path. The introduction of the oxygen at high 

flow rates disrupted the initially uniform drop streams after approximately 

8 cm of flow. However, the effect on the distribution of drops in the lower 

portion of the lube wab umoticeable since the drops were generally scattered 

by wakes behind the drops by the time they had traveled 30 cm. With smaller 

drop sizes this effect was more pronounced. 

Two distinct types of records were obtained, depending on the type 

of ignition that occurred. Characteristic of the first type are Plates 1 through 

5 .  In these records the burning appears to have originated from a point source. 

Examination of the ignitor after such runs showed the foil to be intact except 

for  a hairline burn across its width. 

Examples of the second type of record a r e  shown in Plates 6 through 9. 

Here the ignition appears to have occurred in bulk over a finite width and 

examination of the ignitor after these runs showed that almost the entire piece 

of foil had burned,introducing a brilliant flash at the moment of ignition. 

The reason for separating the two types of runs is shown in Fig. 9, where 

time to detonation is plotted versus distance to detonation. It may be seen that 

in the case of bulk ignition the transition occurred appreciably earlier than in 

the case of point ignition. Figure 9 demonstrates also that the type of ignition 

becomes iess important as the i i i f i iCt iGf i  distaixe is shzrtened. 

of the two types of ignition were probably minute tears in the foil made during 

preparation and the effect of the kerosene seeping between the electrodes and the 

aluminum foil. The range of induction distances for all runs was found to be 

about 0.3 to 1 .5  meters. 

The rr-iiin cz-cses 

The inlet stoichiometric ratio for the lowest flow rates (fuel/oxygen) 

varied from 0.4  for the No. 24 tubes to 3.6 for the No. 18 tubes, but no 



correlation was made with flow rates. The detonation velocity was found to 

vary from 1550 m/sec to 2200 m/sec; however it showed no consistent variation 

with either plate size or flow rate as shown by inspection of Fig. 10. 

DISCUSSION 

One of the most significant features of the streak records is the 

asymmetry of the flame world lines. The downstream flame always accelerated 

more rapidly. This can be explained as a consequence of the long burning time 

of drops (which is an order of magnitude larger than that of a flame in a homo- 

geneous gaseous mixture (I5)) combined with the relative velocities between 

the flame fronts and the drops. These two effects cause the downstream com- 

bustion zone to be thinner and thus increase the power density of energy release. 

A specific example of the effects mentioned above is graphically 

illustrated by Fig. 11. The conditions correspond to the record of Plate 3, 

at 13 m/sec. after ignition, giving upstream and downstream flame velocities 

of 2 . 5  and 5.0 m/sec respectively. A 75 micron diameter drop traveling 

3 . 0  m/sec would, in accordance with Godsave, (2) have a lifetime of 5 . 6 2  msec. 

It would thus release all of its energy within 1 .1  cm of the downstream 

flame front, but it would be 3 . 1  cm away from the upstream flame by the 

time it is burned and release only 51% of its energy within the 1 . 1  cm distance 

from the upstream flame front. A similar example with a 200 micron drop 

shows that 38% would burn within 1 . 1  cm distance from the front of the down- 

stream flame while only 8% would be consumed under similar conditions for 

the upstream propagating flame. 

A s  the downstream flame accelerates, its higher velocity tends to 

increase the combustion zone width and thereby decrease the power density. 

However, the pressure waves generated by the accelerating front piv+coriipress 

the medium and cause the drops to burn more rapidly and thus allow the flame 

to  continue its acceleration. This is in agreement with the results of Hall 

and Diederichsen (16) who demonstrated experimentally the enhancement of 

the rate of combustion associated with an increase in chamber pressure. 



It may be seen that in all cases the rarefaction following the downstream 

flame slowed and then reversed the flow behind it as the flame accelerated. 

This reverse flow, a s  measured from Plate 1,  reached a velocity of 105 m/sec 

at 15 cm below the upstream flame when the flame had a velocity of only 

150 m/sec. The effect of this was again a decrease in the combustion zone o r  

an increase in the power density which allowed the upstream flame to accelerate. 

Plates 2 and 12 show that the processes were identical irrespective of where 

ignition occurred. 

Although the upstream flame was accelerating, it is of interest to note 

that the flame was nornially transformed into a detonation by interaction with 

the retonation from the downstream detonation. Examples showing that the 

upstream flame could transform into a detonation by a continuous acceleration 

a r e  given in  Plates 12 and 13. Plate 12  is a case where the ignitor was near 

the bottom of the tube and the downstream flame passed out of the end before it 

detonated but the rarefaction from it was sufficiently strong to initiate the 

upstream flame's acceleration. In Plate 13 the upstream flame accelerated to 

detonation before it was intercepted by the downstream detonation wave. 

The drop-gas system was  not homogeneous as a re  gaseous systems; 

but the records revealed remarkably smooth combustion processes. Expansions 

of the length scales for Plates 3 and 4 a re  given in  Figs. 12  and 13 respectively 

along with a plot of the downstream flame velocity and acceleration from Plate 3 

in  Fig. 14. These figures demonstrate that the observable smooth flame world 

lines a re  associated with smooth variations in both the velocity and acceleration. 

Similarly Plate 11 (an enlarged section of Plate 10) indicates that, in at least 

some cases, detonation was achieved as the culmination of a continuously 
acce:e-i-zt~i.g flame cuiiirasied io p-ure:y gzseo-us systems oftefi 

a large discontinuity in velocity. The detonation wave velocity itself exhibited 

these smooth characteristics notwithstanding the change in conditions along 

the tube. This invariance of the detonation wave velocity is shown most 

strikingly in  Plate 6. 
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A plot of the flame world lines for Plate 5 is shown in Fig. 15. In 

contrast to Figs. 12 and 13 the velocity was almost constant from 9 to 17 m/sec 

after ignition. However, inspection of Plate 5 shows that this coincides with 

the time that the flame passed through a region of much lower fuel concentra- 

tion as demonstrated by the dark streak on the record there. 

Perhaps one of the most significant features of Plate 5 is shown by 

the path of the upstream flame which had zero absolute velocity during the 

time the downstream flame passed through the region discussed above. 

This suggests that the mechanism of feedback, due to the rarefaction behind 

the downstream flame, influences the upper flame at a much earlier stage 

than previously indicated. 

The effect of drops which have hit the walls is shown by the particle 

paths of Plates 5 and 9. While the r e s t  of the drops were accelerated, the 

drops at the walls remained motionless until they were disturbed by the large 

reverse flow resulting from the rarefaction following the downstream flame. 
A source program developed at the Propulsion Dynamics Laboratory (17) 

was used to calculate the Chapman-Jouget conditions a s  a function of stoichio- 

metric ratio. Computations were made for liquid fuel in pure oxygen (spray) 

and also for gaseous hydrocarbon and oxygen. Analysis of the kerosene fuel 

showed that it was largely composed of pariffins so the physical data of 

dimethyl pentane was chosen a s  a model to match the molecular weight and 

the heat of combustion. 

from the JANAF Tables. 

A l l  other thermal data used in the program was taken 

Results of the computations a r e  presented in Figs. 16 and 17. The 

detonation velocity was found to have the same value irrespective of whether 

the fuel was assumed to be initially in iiquici or gaseous p'mse. The zomi;.Azd 

detonation velocities (1700-2600 m/sec. ) compared favorably with the measured 

values (1550-2200 m/sec.). The pressure ratio across the detonation was 

found to be higher for the spray than for the gas. This was attributed to the 

large expansion of the fuel as it changed from liquid to gaseous phase. 
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SUMMARY AND CONCLUSIONS 

Apparatus for the optical observation of two-phase combustion was de- 

scribed. It consists of: (a) a Plexiglas tube of l 1/2 x l 1/2 inch cross- 

section x 75 inches long, (b) the associated fuel and oxidizer supply systems, 

and (c) the optical system consisting of a rotating drum camera fitted with an 

automatic shutter. The system yielded streak self-light photographs of 

accelerating flames in liquid kerosene-oxygen mixtures including the transition 

to detonation. 

Essential features of the development of the process were  not affected 

by the position of the ignitor. Detonations were observed to develop in a dis- 

tance as short as 25 cm and as long as 150 cm from the point of ignition. 

There has been a marked difference observed between the upstream , 
and downstream propagating flames. The latter always accelerated first. 

This was explained on the basis of the extent of the reaction zone and con- 

sequently the power density of energy release within the flame fronts. The 

downstream flame always had a thinner reaction zone, dur to smaller 

relative velocity with the stream, and thus a higher power density. 

The transition to detonation of the upstream flame was normally caused 

by the rarefaction behind the accelerating downstream flame which reversed 

the flow and promoted the increase in power density of energy release by the 

upstream flame. 

The measured detonation velocities ranged from 1550 to 2200 m/sec. 

This variation comes within the values predicted by theory. 
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